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Fitting a Polynomial of degree one:y = a + bx

Algorithm

1. Start
2. Read the Number of observed data (n)

3. Fori=1ton:
Read X;and Y,
Next i

4. Initialize:
sumX=0
sumX2=0
sumY =0
sumXY =0

5. Calculate the Required Sum
Fori=1ton:
sumX = sumX + X;
sumX2 = sumX2 + X, * X
sumY =sumY +Y,
sumXY = sumXY + X; * Y,
Next i

6. Calculate the Required Constants aand b of y = a + bx:
b = (n * sumXY - sumX * sumY)/(n*sumX2 - sumX * sumX)
a = (sumY - b*sumX)/n

7. Display values ofaand b

8. Stop



C Program

#includec<stdio.h>
int main()
{

intn,i;

float x[100], y[100], sumX=0, sumX2=0, sumY=0, sumXY=0, a, b;
printf("The number of observed data: \n");
scanf("%d", &n);

printf("Enter data: \n");

for(i=1;i<=n;i++)

{

printf("x[%d]=",i);

scanf("%f", &x][i]);

printf("y[%d]=",i);

scanf("%f", &yl[i]);

}

for(i=1;i<=n;i++)

{

sumX = sumX + x[i];

sumX2 = sumX2 + x[i]*x[i];

sumY = sumY + y[i];

sumXY = sumXY + x[i]*y[il;

}

b = (n*sumXY-sumX*sumY)/(n*sumX2-sumX*sumX);
a = (sumY - b*sumX)/n;

printf("Values are: a=%0.2f and b = %0.2f",a,b);
printf("\n Equation of best fit straight line is: y = %0.2f + %0.2fx",a,b);

return(0);

}

//Run the program and try to generalize it for polynomials of degree 2
[/and 3 A




The Remainder (Error) Terms in Interpolation

Let y = fix) be a function known at (n + 1) distinct arguments x; and let y; = Ax)) be e
corresponding entries, j = 0(1)n. . . | |
Let ¢(x) or L, (x) be the interpolating polynomial (of degree < n) of flx) Interpolating , th
arguments x;, j = 0(1)n. ‘ }
So L,(x) coincides with fix) only at the nodes z;, and L,(x) differs from flz) for , -
n
Jj = 0(n. Thus
fx) — ¢(x) = fix) — L,(x) (=0, for x = x; and
#0, for x 2, J = 0(n. | |
Hence if x # xg, X1, Xg, .., X, We always commit some error to approximate the functioy g, :
by ¢(x) or L,(x). We denote the error by E(x) or R,. So E(x) = R, = f.(x) - ¢(x.). We now Provig, |
a formula of error term or remainder term consisting of the function flx), its derivatives, all
nodes or arguments x;, j = 0(1)n, by means of the following theorem. ?

!

B Statement : If Ax) be a continuous function and has continuous derivatiye
upto order (n + 1) in an interval containing the interpolating points : x, x,, % *
wes Xy (X9 < X; < X < ... <x,), then at any point in x # x;,j = 0(1)n, the error tem
or remainder term E(x) in approximating fix) by the interpolating polynomial
¢(x) (of degree < n) is given by

f(n+l) ( 5) s

Ex) = filx) - p(x) = (x - xp)(x - x7) .. (¥ -x,) miD! where ; € (xg,x,) .08 'E

¢ Proof : Let fix) = ¢(x) + E(x), such that Rx;) = ¢(x;), j = 0(1)n and E(x) be the associated |
error in approximating flx) by ¢(x). _ :

Let us consider an auxilary function G(¢) with independent variable ¢ such that

G(t) = [.ﬂt) _ ¢(t)] _ Iﬂx) _ ‘p(x)] x (t—xo)(t—xl)... (t—xn) . [9} |

Clearly, (x — 29 )x = x7) ... (x - x,) |
() G(t) vanishes at (n + 2) values of ¢, viz., t = x, x;, %o, ..., x, and x in the given interv. t
(i) G{(t) is continuously differentiate upto (n + 1) times in the given interval. . t
[Since (¢ - x)(t ~x,) ... (¢ - x,,) and ¢(¢) are polynomials and hence they are continuous! |

differentiable, also fit) is continuously differentiable upto (n + 1) times in the 8% |
interval by hypothesis]

Thus by repeated application of Rolle’s theor
G(n+1)(¢') =0, 4: € (xg, x,)
Now we have

f‘

ye
em on the function_G(t) in [xg, x1), We };3) :

(i) ¢(2) is a polynomial of degree < n = U+ 1) = 0, also

e . . o telV

(i) (¢ -x)t - xy) ... (- x,) is a polynomial of degree (n + 1) with coefficient of leadin8 'ifﬂes
t"*1is one. Thus its (n + 1)th derivative is (n + 1)!. Thus differentiating (9) (n + e
both sides, and using (10) we get with respect to ¢ '
0= G(’“l)(f) - [f(m»lj(g) - 0] - [flx) - d(x)] x (n +1)!

(x—-xp)lx—x1) ...(x - x,,)




= fle) - pla) = (& —x)x —xp) ... (x - xn)ﬁil)(_‘fl
(n+1)!

Hence the remainder or error term in interpolation is

fix) — ¢px) = E@®) = (x — 29)(x — x7) ... (x — xn)w [Proved].

: (n+1)!
g

. | 1. The error or remainder term in interpolation has not much practical use due to the
presence of almost indeterminate term f**1((£). If the error is large, the interpolating
polynomial ¢(x) [approximation of fix)] is of no use. : '

2. In most cases the analytical term of f{x) remains unknown. So we can not determine
the value of f('”'l)(f) involved in the remainder term.

3. Even if somehow the function f(x) is known analytically, still we can not determine the
term f‘”*l)(f),‘ due to very complicated nature of the function.

4. The number £ € (xg, x,) is unknown and depends on x. So determination of FE) is
impossible, even if we know f*1(x).

Hence in any of the situations, the remainder or error term E(x) can not be evaluated
exactly. Our objective is to find out its maximum value, i.e., to find out an upper bound
| of the error term in some special cases only.

® Bound of Error

If ) | £**V(£)| < M in the given interval [xo, x,] and
.. (11)

xelxg,x, ]

|
‘ (i) DA% | (x — xo)x — x7) ... (x —x,)| =N, then |E@®)|< ===
;

ie., _MN_ s an upper bound of the error E(x).
(n+ 1!

X} Remainder Term and its Bound in Linear Interpolation

~ In linear interpolation we have two arguments xg, x; and the corresponding entries are
Yo = fxy), y, = flxy) for a continuous differentiable function (upto order two) y = flx). Let ¢(x)
- be the interpolating polynomial (of degree < 1). Thus the error or remainder term is given by

1 Ei(x) = fix) — ¢(x) [ = 0, for x = xg, X1
#£0, forx # X0, X1

(t — x0 )t — %)
, (x—xp)x—27)
It is clear that g(¢) = 0 at ¢ = Xg, X1 and x. Differentiating g(£) twice with respect to £, we get

~ Consider the auxiliary function g(t) as g®) = [fit) ~ #(®)] - [flx) - $(x)]
|

” "’ 2
&) =f(t) - [f) — g x NG



As before by repeated ap_plication of Rolle’s theorem we have e
g’ ‘(€)= 0, £ € (xg, x1) [since ¢(t) and (¢ — x()(t — x,) are polynomials, they are
contmuously differentiable and such is true for flx) also by hyDOtheSm]
= flx) = ¢(x) + - (x xg)x — x)f ().

Thus the remainder term or error term 1in linear mterpolatlon is given by

E;(x) = fix) - ¢p(x) = 5 (x - x9)(x = xf"(E). - (12)
®m Bound of Error in Linear Interpolation
(1) Let |F1&)| <M, & € [xg, x;] and

(ii) we know the maximum value of |(x — xp)(x — x;)| occurs at x = % (g + x7).

Hence maximum value of |(x — xp)(x — x;)| is %(xl — x0)°.

Therefore from (11) we have,

1
|Ei®)| = 5 [ J22% |G —xo)x —xy)| I[since |f(5)| <M
= B @)|s G G -%0)® .3

R S

The error will be minimum, if the arguments x,, x4 are close to each other.




,! A function flx)defined on [0, 1] jg such that f(0) = A1) = 0 and f(-;-) =- 1.

Find the quadratic polynomial ¢(x) which agrees with flx) for x = 0, %: 1.

3
If —&?—\ <lfor0<x<1,show that |f(x)—¢(x)| S 3% 'forOSxSl [CH 1984]

olution Here we use the Lagrange’s inte

: rpolation formula to obtain the quadratic
lynomial @(x) as

DO =

i (x—%)(x—l) (x - 0)x-1) (""0)("")
¢(x) = ( _%)(0_1) S (..12._0)(%—1) s (1—0)(1_%)

= ¢(x) = 4x(x — 1).

The associated error E(x) is given by

Ex) = fix) - $(x) = (¢ — 0)x — 7 Jix - 1) f“:;f:)

x 0

= |E@)| = |fn) - $6)| = |2 - 0| |x— 3 | |x=1| x = |FOQ)].

1
S1-~1§ 1. % 1 [sinceasx e [0,1], |x—0] <1, |x—-—|S§ |x-1] <1land |[f® )| <1]
5 =
12
Th 1 & L
erefore, |Alx) — ¢(x)| < 5 [Proved]



